http://www.hlzs100.com

电感策画的三个规矩

  由磁滞回线图可以看出,H加大时,B值也同时增加,但H加大到一定程度后,B值的增加就变得越来越缓慢,直至B值不再变化(u值越来越小,直至为零),这时磁性材料便饱和了。通常电路中使用的电感都不希望电感饱和(特殊应用除外),其工作曲线应在饱和曲线以内,Hdc称为直流磁场强度或直流工作点。

  对于储能滤波电感,由于需要承受一定的直流电流(低频电流相对与高频开关电流也可视为直流),也就是存在直流工作点Hdc不为零。磁芯需加气隙才能承受较大的直流磁通,如下图,所以该类电感通常选用铁粉芯做磁芯(有分散气隙)。

  由于磁芯加了分布气隙,其饱和过程就不是一个突变而是一个渐变的过程,所以电感的不饱和问题就转化为电感感值在直流量下的合理下降问题。

  对于PFC、BOOST、BUCK以及DC-DC电感,电感的取值通常由设计要求最大纹波电流(Ripple Current)来决定(通常设计指标是最大纹波电流百分比)。

  其中,对于BUCK和DC-DC电感,其直流工作点(IAVG)相对恒定,如图这是在最大直流工作点时,所需的电感最小感值。

  可从磁芯厂商提供的图表或计算公式得到。通常,无论如何设计,在最大直流工作点处,都不应低于初始磁导率的30%,否则将导致感值摆动太大而对控制器产生不利影响。

  对于PFC、BOOST电感,其直流工作点是50Hz/60Hz的工频信号,并不固定,如下图。

  此时,最大纹波电流百分比定义为最大纹波电流与额定输入电压下的电感电流峰值之比。

  注意,BOOST拓扑的最大纹波电流发生在输入瞬时电压为BUS电压一半处,此时占空比为0.5。

  注意,此处的直流工作点是输入瞬时电压为BUS电压一半时对应的输入瞬时电流。

  同时,在最恶劣条件的最大直流工作点下(低压满载输入电流的峰值),也都不应低于初始磁导率的30%。

  由于INV电感需承受RCD等非线性冲击负载,所以UPS通常有波峰因数比大于3:1的要求,考虑实际逆变限流会稍大于3:1,通常取到4:1,所以,INV电感的最大直流工作点可以设为4:1(4倍于额定负载下的电感电流有效值)。当然,若波峰因数规格要求改变,需要做相应调整。

  最大直流工作点下,μdc% 不应低于初始磁导率的30%,否则很可能造成限流不可靠而损坏INV开关管。

  感值确定后,选择恰当的磁芯,查规格可得其AL值,用以下公式就可算出匝数。

  电感损耗导致的温升在允许的范围内(考虑使用寿命)电感主要由磁芯、线圈组成,所以其温度要求也由这两方面的限制构成。

  储能电感的磁芯有铁粉芯、铁硅铝粉芯、铁氧体等构成,目前使用最多的是铁粉芯。铁粉芯存在高温老化导致失效的问题,其失效机理可解释如下:铁粉芯是由铁磁性粉粒与绝缘介质混合压制而成,绝缘介质通常是高分子聚合物-树脂类构成,其在高温下绝缘性能会慢慢劣化,铁磁材料间的电阻会越来越小,从而磁芯的涡流损耗越来越大,大的损耗导致更高的温升,这样便形成了正反馈,这称为热跑脱效应(Thermal Run away)。铁粉芯磁芯的寿命便是由热跑脱效应决定的,其与温度、工作频率和磁通密度都有关系。目前公司使用较多的MicroMetals公司的铁粉芯存在上述问题。但也需提醒的是,如绝缘介质无高温劣化问题,磁芯便不会有热跑脱效应,这与各公司的使用的材料和工艺有关,并不绝对。

  磁芯的温升与磁芯损耗直接相关,如前所述,磁芯损耗主要由磁滞损耗和涡流损耗构成,对于粉芯类磁芯,由于磁材料间绝缘阻抗很大,涡流损耗几乎可以忽略不计(但热跑脱效应是由于涡流损耗越来越大引起)。磁滞损耗只与频率和交流磁通密度(磁滞回线面积)有关,与其直流工作点磁通密度关系不大,以下公式是某公司铁粉芯磁芯损耗计算的经验公式:

  其中为开关工作频率,B(单位Gauss)为一个开关周期内交流磁通密度的峰值,其为个开关周期内交流磁通密度峰峰值的一半()。为常数,与材质有关,常用材质常数见下表。

  对于BUCK和DC-DC电感,稳态工作时,脉宽也基本稳定,所以B值很容易确定。但对于PFC、BOOST和INV电感,其脉宽一直是变动的,B值也一直是变动的,所以在一个工频周期内的瞬时损耗也是不定的,这时的损耗应以一个工频周期的平均值 Pcore-loss-avg 来衡量。

  我们知道最大电流纹波发生在输入(或输出)是输出(或输入)电压一半的时候得到,其实此时也是瞬时交流磁通密度达到最大的时候,称之为,所以此时的瞬时损耗也达到最大。经过理论计算与实践检。

上一篇:单片机适用器械大全超等赞工程师必备
下一篇:电力电容器型号分析_电力电容器常用型号